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Each technique is illustrated by a numerical example.

D118 ,,ie 'm" '"' ~UNCLASSIFIED
I'M ~~ ~ ~ usevift? MMAZSZWOY of ISO VON a g~



SIGNL DETECTION FOR UNIFOR wL PROCESSES
'V% 01W.' C. 3. Bell*. R. Atmed'*, C. J. Park*

"San Diego State University*
University of Strathclyde** VCFr

St"te U Ivvvxity Of New York, Buflo, C 2 71982

1. Introduction and teem,
A maj or part of the statistical methodology in signal detection is

directed towards mnodels In which the data received are Gaussian or Gaussian-
mixture. Under thes. models the classical statistical techniiues and
their extensions can, in essefte,. be adapzted to signal detection problem.

Another imwtant sat of fedli of mdi 11v1011 *; replacing the

processeas and no-hmmewaPiimin PWOcSelo. A0e "s"g detection
methodol'ogy here Is priwfipally pelusetric in rature.

In this Pame omr sKim is to fgwestt -sigal detection teckiques
for the ufim raemal processes. 1he other two cases naftly hamwgeneous
and non-iemapneom Poissont processes are10 als ormtmnt ftV9 igad

detection viewpit, an, will be d 4ltwth elser.

The nerl sinaldetetion problem cam- be treated to problem of
testing statistical hypotheses, see Bell (1960). In practice, detection
-is accoaplished by smes of at device titidiroceiws ~knomV A

~~~01 os i inal )dtm/rartificial noise, SAd from these
InpUts "decides" (YNS or NO) whethoer rnt a signal is present. In

~ W This o*Was principally smpported by she Office, of Naval Research*tango9 Cront no. NIRUJ44*s*o
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making this decision, the detector is liable to commit two types of

errumous outputs:

(i) false alarm (PA), if NO signal is present and it decides YES;

and

(ii) false dismissal (FD), if YES a signal is present and it decides

NO.

The detection procedure con be seen schematically from the following

diagram:

Possible Signal Data 0ETECTS
Po0 No

The probability that the detector will produce a false alarm (PPA) will

be designated by a; B will denote the probability that the detector

will produce a false dismissal (I"D). Obviously, the perfect detector

will be a detector which will produce a = 0 and 0 = 0; but this has

not yet been constructed. However, there is a considerable interest in

the so-called ideal or optimal detector. This can be classified into

two form as given below.

(a) Ideal detector with given a priori probability p: This detector

minimizes the probability of an error, either PA or PD, that is,

C (0,0, p) -p0 (I - p)a

' -
7.""',. ..-
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whore p denotes the a priori probability that a signal is present;

(b) Ideal detector with pre-chosen PFA, a: For this case the

objective is to choose a such as .001, .01, .05 etc., and select a

decision rule (detection procedure) among all the available procedures

which minimizes B; in other words it maximizes w = 1 - B, the power

of the detection procedure.

The first type of detection procedures (statistical tests) are

comonly known as the Standard Bayesian Detection Procedures CSBDP); and

the second type as the Classical Detection Procedures (CDP). If p is

known beforehand, clearly it is advantageous to use the first type pro-

cedure, otherwise the second type.

The simplest form of the PS data received by the detector consist of

discretized observations (note not necessarily discrete values) Xl, X ... ,

of a uniform renewal process, which is a continuous time process, at times

t 1 , t2 , ..., tn . To obtain optimal detectors, the following assumptions

are made on the succeeding statistical analysis.

(1) The random variables XV, X2 , ..., XU are statistically inde-

pendent;

(ii) Xl, X2 # *., Xn have a comon strictly increasing continuous

cumulative probability function (cpf) F such that F(x) - P(Xi < x).

(For the uniform renewal process it is clear that the cpf F is monotone

non-decresing and F(O) w 0 and F(.) - 1.)

(iii) If the PS data are PN (pure noise), then F a F0 ; a specified

uiform renewal process (URP) cpf; and if the PS data are noise-

plus-signal (N 3 8), then

A AV or

. il. . l ... i..mii r. - -- ,
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S P 0 O whore P1  is still URP cpf but different from FO .

The implications of the various assumptions ar discussed in detail

in ell (1964) in connection with the signal detection problem. With

the above preliminary considerations, it is now possible to introduce the

three mjor statistical models of detectors to be investigated in sub-

sequent sections.

MDEL I:: PM1 : - The pure noise cpf F0  UCO, O), 0 < 60 < M, is

known and there are available PS data XI, X2, ...,I xn

whose cpf P BU(0' 91), 0 <1 < MV is imknown.

In this cue we want to detect the null hypothesis;

HORPN)1 0 0 60 against alternative; H(N + S):

0 j 0 O . One-sided versions of the alternative

hypothesis will be (i) HaN S): 0 o0

(H) Hs(N +S): 0 < 0.

NOEL II: PN : The problem here consists of having an ideal detection

9 .

Sprocedure for Ho[F a K~OM9; 0 unknown) against

Ha[p 0 UCO,9).

MDEL III: PM$: In this case the basic data (10) set is

Z & (Xi. X2# "Of. X; Y It Y20 ***. Y.) or

2..., vn) who

V XI... X j and V MY ... Yj, Lot

x , U(o,e 1 ) end Y 'u U(0,02), where and e2 are
9, S~funknwnf



We want a detection procedure for H0 (PN3): 81 = 62

against Ha(N + S): 8l 0 02. Similarly, one can

define H*(N + S): > 82 and HJ(N + S): 81 < .

Since the underlying process is a uniform renewal stochastic

process, instead of the probability distributions FO, F1, F2 etc. We

shall reformulate our null and alternative hyvotheses in term of pro-

babiltty laws X0 Zl X2  etc. This is done in section three when

the suitable detection procedures are discussed.

The organization of the paper is as follows.

In section two basic statistical concepts are briefly outlined. Next,

in Section three optimal detection procedures for (1) PN1 versus N + S

* and (ii) PN2 versus N + S are developed. The detection statistics

here are of the Kolmoorov-Smirnov-type, Lilliofors- and Srinivasan-type,

and same which are based on maximal statistical noise. In Section four

PN$' versus N + S is dealt in detail.

2. Basic Stattteil Concapts

Let Xi, X2 , 600D Xn be independent identically distributed random

variables with probability distribution fimction F(x), and set

Wn a X1 * X2 + + Xm for a-*1, 2, ... , n with W0 E 0. In

,' stochastic processes terminology we say W, n > 1) is a renewal

process and (Xn, n > 1) is the dual inter-arrival time process.

In the sequal we assume F(O) - 0; of course, one could allow an atom

,I *
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at the origin, but nothing would be gained and we would have to exclude

the case of a distribution P concentrated at the origin.

Definition 2.1. If X1, X2 , ... are independent identically dis-

tributed u(oe) random variables, then the process WV, V2 .... f1,

with f = l I 00 = 0) is called the uniform renewal process

(UP).

The random variable Vj denotes the waiting tim to the jth event.

Let 11(URP) denote the family of all uniform renewal processes' pro-

bability distributions, that is

n(URP) (P(-): P - U(0,0), 6 > 0).

Consider the situation like models PM1 , PN2  and PN3  in which the

data received is X - CX, ... , or Z a (X, ... , X; Y, ... , Yn).

For many practical situations the decision as to whether a signal is

present or not is optimally based on the data solely through the minimal
Ssufficient statistics N-S-S, SC,) or S(Z). However, in many other

situations one needs a quantity coqplemsntary to the M-S-S; this is

called the maximal statistical noise C-S-N) and is denoted by N(k)

or N(Z) depending upon the model in the problem. In what follows we

write Z for the generic data point.

CA) Basic Data Transformation and Maximal Statistical Noise

Definition 2.2. Let 8(Z) (N(Z). SCZ)] be one-to-one almost everywhere

I .... -..... .. .*.. .. . . ........... ......... iilniil~lk im '' - i * : -
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with the M-S-S, S(Z), and the entity N(Z) be statistically independent

of S(Z). For the family of interest fl(URP), (i) 6(Z) is called the

basic data transformation (BDT); and (ii), N(V) is called the

maximal statistical noise (H-S-N).

Example 2.1. Let X1 , X 2 , ..., X3 be the inter-arrival times of URP

in the family A(URP). Then the maximum likelihood estimator for 8

is 6 M x.(3), the largest order statistic of the generic data point.

Clearly, M-S-S is X(a) and a uniformly minimm variance unbiased estimate

for 8 is 8* =- )X (MY Now, the vector of random variables

V-. (v ,  {-m x:2A

1V1 2~ **XIJ X ...* X(3. ' Xcm(i) ' x() ""' x

.4 is not a M-S-N. However, the augmented vector variable defined by

i ( *, R) a {VI,.. V*.1 R(X1 , ., RCXn)}

is indeed H-S-N, here R(Xj) denotes the rank of the random variable

X fo J- 1, 2, ...,m.

(B) Types of Distribution-free-ness

There are three distinct types of distribution-free statistics which

aise for many types of detection problem.

Definition 2.3. (i) A statistic T() is called nonparametric distri-

bution-free (NPDF) w.r.ts a family n of stochastic processes if there

exists a single distribution finction Q(.) such that for all probability

%'j".I. ..... ... .I. ...... ..... ........ * ' "i : ' ,'..- . '. -. :--,; " " " " " " •. . . . .
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', against Ha: e > 80 any test, *(z), is uniformly most powerful (UMP) at the

significance level a for which EO #(Z) = a, E8 #(Z)< a for

< 0; and O(Z) = 1 when X(3) a mx(X1, ..., X,) is greater than

, 0 and zero otherwise [Lehmann(1959, p. 110)].

For detecting H0: 8 e0  against Ha .e o e0  a unique UMP unbiased test

exists and is given by O(Z) = I when X > 0 or XcM) <80 maE

and K) = 0 otherwise. Similarly, a LIMP detection procedure for the

- case H0: e a 0  against H.: e < 80  can be developed and combined with

the one-sided case discussed above. [Note:A variation of the first

situation is PN1  versus N + S, that is HO: r= . A c f(URP) versus
~0

Ha: o <* (where <* indicates that ,is stochastically larger than

); and the second case for URP becomes HO:w= o 0 against
0r

H: A'4. ( MUP)).J

Remark 3.1. Consider YIl ' m to be a random sample from the family

of two-parameter exponential densities given fr-

! {£x; Moo) a 00-0(x 'o),  X> 01..-

Clearly (Xl, ..., Xm) with X = e is a random sample from the

uniform distribution U(0, e'). Now, one can easily develop the UMP

detection procedur.e for Ho: 0 "o against Ha: B 0 o whena is

assumed known; and also one can determine the IMP detection procedure

for H0 : ( ) - (co, B0) against the alternative Ha: a > %, 0 < 00.

Rea rk 3.2. Suppose that in a detection problem we are interested to detect



-10

that certain signals (events) occur uniformly over a stated time interval

such as (say) 35 minutes, one hour, one day etc. If the total time

interval is divided into N equal parts and pj denotes the probability

of an occurrence (presence of a signal) in the jth subinterval, the

detection problem becomes H0 : pj for j 1 1, 2, ..., N against

the alternative Ha: Pji 0 N"1 for j = 1, 2, ..., N. Then the detection

rule can be based on the statistic (a chi-squared statistic)

2. T* = ~ ~ -j; --1)2
SJul

where q1 is the relative frequency of a signal occurrence in the j th

subinterval. The approximate power of the detection precedure is given

by the probability of rejection

W 1  X2 ; )dw

where 2_1(.; X) is the noncentral chi-squared density with N 1Xi N

degrees of freedom and noncentrality parameter X = I (p . N_ 12.
jul

Here, the critical point c is determined by the expression

' -1Jl(w) dMdw a

under the null hypothesis.

Remark 3.3 [Lehan (19S9, p. 3S)]

Suppose that in the above set-up (Remark 3.2), where the hypothesis

of uniform distribution is being detected, the alternatives of interest

. ... --
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are those of cyclic movement (perhaps, not an unusual situation in some

signal detection problems), which may be represented at least approximately

by a sine-wave function

- N1 +0 P wi/N sin(o-eI*)dw, j = 1,2, ... , N

Here, p is the amplitude and 0* the phasin, of the cycle disturbance.

By setting p = pcos P", n = psin 0* one gets

pj - N-(I + a( j + bljab )

where

IT I

a. = 2N sinIsin(2j -1)
I NN

bj - -2N sin 1cos(2j 1) M .
^ N N

AA N 2
The quantities C, n which minimize N I (qj - pj) (subject to the

Jul

fact that equations for pj define a surface) are

N N 2 A N N 2-N X ajqj ,f= aj; T N ! b~.Ij bN I a J q1 j bjqj 1 b
Jul Jul jul ' jl

For N > 2, after some algebraic simplification the detection rule

becomes

N 2 N 2

Jul o Jul i

where the numer of degrees of freedom of the left-hand side expression, a
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chi-squared statistic, is d - 2. The noncentral parameter determining

the approximate power, that is for fixed PFA a minimizing PFD 0 for

N * S alternative cpf FI, is

2 w 2 2,::"A 2- (E sin r,) + a (nN sin )

*mpN•p O2 N2 sin 2 w

Now, we return to the uniform renewal processes with given inter-

arrival times when the underlying parameter becomes a nuisance parameter.

(B) The Icolmozorov-Smirnov-IYTe

Detection Procedures for Renewal Processes with Uniform Inter-

arrivals (Nuisance PaTrameters Case)

The object here is to develop the Kolmogorov-Suirnov-type detection pro-

cedures for "H40 : F - U(O,B) for some 8 > 0, that is the case

* . PHI : XF £ C(URP), where X1 , X2 , ... X ... are the interarrival "times"

of a renewal process with distribution law -

If the value of e were specified as 0  then, in addition to

statistics employed in section (A), a natural Kolmogorov-Smirnov statistic

is

D- sUP ICF(x, 90) - ) I
x

where %m(X) is the sample cpf. However, in the situation under dis-

cussion the value of e is unknown, and, therefore, 8 is a nuisance

par nter. In the case of nuisance parameter structure, we define two

J
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variants of Ilmogorov-Smirnov-type statistics. These are called, res-

pectively, Lilliefors-type statistics and Srinivasan-type statistics;

see Lilliefors (1967, 1969), Srinivasan (1970) and Lieberman and

Resnikoff (1955) for some special cases.

Definition 3.1. (i) Let Z a (XI, ... , X ) be a random sample with dis-

tribution function F., and let Fr(x) be its sample cumulative dis-

tribution, where 0 is unknown. The statistic

oA D a sup IP,(x) - 'FU(x)j

where Y x) is the maxima likelihood estimator (LE) of FO (x),

is called Lilliefors-type statistic.

(ii) With the same notation as above, the statistic

5- I %(x) - Cx),
x

where W,(x) = E(scXI)IT} with SXx 1l }  the indicator function,

and T as a sufficient statistic for 0, is called Srinivasan-type

statistic.

The above two types of statistics are examples of NPDF statistics

w.r.t. an appropriate family of distributions Q*, such as {normals),

{exponentials), and fl(URP).

Let a probability law 4 0 (X; 01 02* ... , a k), say, with dis-

tribution function Fo(x; 01, ..., Ok be such that TI , T2, ... ,T k

are the joint sufficient statistics for the vector parameter 0 (0I ,

.................

...." , ,". * .tt"" . * --',.",,''-; .. * ". ,*,.. " .5."-,.-... . . . .-. ',.. . ,. . -. .-.. . .• . ..... .•"-", " . " . , . -.-. -...... ,-
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For a fixed real xI define the random variable S(Xl) I x < }

where IA is the indicator function of the set A. Clearly S(X) is

an unbiased estimator of Fo(x; 01, 2- ... , ek ) under H%: F =F0 .

-2 Consequently, from the general theory of sufficient statistics it follows

* that the statistic

?O(X) a- I .... 'k '

is an unbiased estimator of Fo(x; 0) with a smaller variance than S(X 1).

If in addition (T1 , ... , T ) are coWplete, then P (x) is the unique
k

MVUE of F0 (x; 8). If the distribution of statistics like or

does not depend on 0, then a statistic of this type would be an

appropriate statistic for detecting a composite hypothesis F.

Now, we specialize these statistics to the case of renewal processes

with uniform interarrivals, where the nuisance parameter is 0 > 0.

MODEL: PN2.

In the treatment of signal detection problems the objective here is

to detect

PW .(Z) e Ql(MR) against (N4 S ): 9o'(Z) f flCURP),

where Z = (Xl, ... , 2 m) are the interarrival times.

Recall that the general rule in constructing detection procedures for

problem like PH1 , PN2 and PN3 is:

(t) to use the -S-S when'the P1N formlatin entails a completely

specified stochastic process law (as in the case with MODEL 1: P1 1), Mand

.4%
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(II) employ the M-S-N when the PN formulation entails membership

, in a family of stochastic processes laws (this will be the case for PN2

and PN3).

(a) Lilliefors-Type Detection Statistics

This statistic was earlier defined to be of the form:

LA

Dm -sup IF (x) -F Cx)j,
x

*i A

-: where P0 (x) is the ML- of F0 Cx), and Fn(x) is the cumulative

sample distribution, that is, F(x) * (number of X,1s < x)jm =

I (x- X) whoe e(u)a I if u > 0 and zero otherwise.
jul J

The NLE of 0 is X(*) - u(X I, ... , X*), which also happens to

be N-S-S. Note that T- X is an example of a PDF statistic abd

T(Z; ,X X ( 8 is an example of a NPDF statistic. Clearly, we have
o

0O if x < 0,

Few - *, 0 <x<a F0(x)- X(3) ')

1 if x > X

Therefore, the Lilliefors type detection statistic can be written as

D - sxIFxM cx)I
x

a sup L x x J X
O<x<x jl (3)
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1 I - x" l

O<X Mjl (a) (i) X(a)

a<~ a Ju

when u x/X ( )  and U(j) 0 XcM/X(2) and m eans "it has the same

probability f or distribution".

Before we give the actual decision rule, we stun up the basic dis-

tribution structure as below.

Theorem 3.1. Under H(PN2 ), the following are valid:

(I) The statistic T(Z, % has the distribution given by

PI-M)I < U) au , O < u <.
r.2i

(it) If R(Xj) denotes the rank of j then the vector variable

R - [R(XI), ... , R(X,3 ] is distributed uniformly over the Vermutations of

(1 , 2v., a). his we write as R It D - U3Sm(, 2, ., n)

(Ii) The vector

"* a U 0.. (Vi, v*.,)
c) (a)

has the sum law as [U(I), *.*A U . 1], where , ... Us. are

i.i.d. random variables from U (0,1). That is, V* .. , U J.)

CNi1
w . her U~t is the Jth order statistic.

Decision Rule. For detecting PH2 : c Q O(URP) versus N S 5: o 4 A(URP);

-- JNp

-pL.
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decide N S, if and only if, fn > d*, where P(D* - d *)" I-,

and a = P {False Alarm).

Lilliefors (1967. 1969) have given soe critical values in other cases

but not for a uniform renewal process. Choi (1981) has computed some tables

for this case. However, we give in the Appendix an improved version of Choi's

table which can be used in practice as well as som illustrative examples.

(b) Srinivasan-Type Detection Statistics

Consider the same detection problem as in subsection (a) above.

This type of statistic (other than URP) was originally suggested by

Lieberman and Resnikoff (1955) and later on Srinivasan (1970) investigated

some cases in detail. Here, the statistics is

D- suplFn(x) - F8(x)I
x

whore P0 (x) is the WUE (minimm variance unbiased estimte) of Fe(x).

If o e D(URP), then by the theory of sufficiency, one gets

Foux) a 1X IX ())

ain ul X (a
-1

- OW{x PX) P(X(M) _<X
*. ,Jl

*. . . . . .-. . . .
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Finally,

,.e(X<) a [ :
.;'.-'F e W) - 1 , x > x~m

L-.=. 0, otherwise.

Consequently, the detection statistic of this type becomes

SUP. sIF (X) -x

1 6* 1 X'*I

o<_x<_x~a ) rn-i x

p%

.up m - l

0<U<l Jul

Thus, we note that the detection statistic D t%)D the

Kologaorov-Sairnov statistic with size a - i, for all m > 2 provided

H0(PN2): ,e- Q(UIJP) holds.

Decision Rule. For detecting PN2: er O(URP) against N + S: A 4: I(URP);

decide N + S, if and only if, D. > d, whoe PfDm  d) I -a, and

a is "PA.

Srinivasan (1970) computed critical values for the normal and

exponential cases, and Choi (1981) for the uiiform Case. For critical values

* : in connection with detection statistic D, one can use the standard oluDROrov-

Smirnov table through the relation DR
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(c) A Detection Statistic Based on Maximal Statistical Noise.

We have already defined a N-S-N statistic, N(Z), in definition

2.2. For the URP case, that is for PM2 :,(e O(URP) the maximal

statistical noise (M-S-N) statistic is

) cv, V

x x
x ; R(X1), "'" R(%x ) ] #

where R(X#) denotes the rank of X Note that in PN2 situation we3.2

have a NPDF structure for the underlying statistic which leads us to the

natural detection statistic candidate Q*, R). Furthermore, we shall see

- - that if a detection procedure does not involve the parameter in the model
7'

under consideration, then it is solely based on N-S-K statistic. Ibis

motivates one to define a third detection statistic D, as follows:

-D a sup ) 1  C (u - u, U1.
m O<<l Jul M--

where u - xX () and U J) a XcJ)/Ac(). Obviously, Dm is the statistic

which is based on M-S-N, (V*, R*). The statistic D* has the Kolmogorov-

Smirnov distribution for a sample of size a - 1, that is, D* D

under P4 2 :. e (URP). For critical values one can use the standard

K-S table with the sample size a - 1.

Decision Rule. For detecting PN2 :, c fl(URP) versus N + S: '4 fl(URP);

decide N + S, if and only if, D* DI 1 V d whore PD 1 <d - a
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and a w P {False Alarm).

In essence, the detection procedure structure for the Model II: PN 2

can be summarized by the following result.

Theorem 3.2. Under H0:ZE: O(URP):

Mi ~*D 1  for a >2;

(1) (-D D, for all a> 2,

(ii) Do r,) ,.(u) - u w ,here P 1,. is. the sa ple cof"'O<u<l a 0-

based on u1 , ... , UNI which are i.i.d. U(0,1).

Proof. (1) This is an immediate consequence of the fact that (Vi, ... , V I)

has the same distribution as the (a - I) uniform order statistics

(1Uc), .. , Un , see theorem 3.1 part (iii).

(ii) That D has the sam distribution as follows

from the fact that:

D a sup C~ (z
3 0<Z< X jul x()

- sup J L (uUc11 -C
0 u< 1 jI W

where u- WX 3 ) and U - X

(iii) Clearly,

-. , ,., " " .- - - .
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sup C (Z x(j)) x Z0• < z < x• - X•

- su II i -zj)) -ul

0 < < J ul (
U-1

~~0< u < I Jai " l )  -

a O<upl F (U) - U1.

who Ua U2 ... a , are .i.d. U(0,1). Ihis establishes the theorem.

Since l as m*, it follows that:

A

Theorem 3.3. Asyqptotically (as m -1m)  the statistics D*, D and D

.have the sme distribution as the usual Colmogorov-Sairnov statistic D,.

4. Detection Procedures for MODEL III: PN3

The rec eived basic data (OD) set is a (XI, ... 9..., Y )-
.(Z 1 , ... , N). The detection problem for this situation is

HORN ): X', -of (A s e(URP), i , 1, 2),3 2

against

Ha(N. S): 0 , IY2 (of. c A(URP) , . 1, 2).

Po this case the natural detection statistic will be a NPDF statistic

"nd should depend on the N-S-N, N(Z) R (V', R), where
UP 

' D

'1 , - , - . - - . -. - . . . .. . ..
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(Vt ) (V . . a,; R, R)
"I . 25 1%.,_ cp .,,=)

Z(N1 ( (N1) R(z R(
z (N) z (N) z(N) IZ)

Under H0 , Z(.) CZ(l), ...( ZcN) and R are independent since

one can write their joint p.d.f. as equal to the product of the marginal

p.d.fs., that is,

Q , I..)) • )
Z(-) .1

. Note that, uder Ho,

N
,, z(.) (, NI w (z )I

where A- 1z(1) , ... , (N)1  0 < z(1) < z(2) < < (N) _e 1 2 ;

and R is distributed uniformly over the permutation set '(SN(I, 2, ... , N)).
Ou

P"thrm"r SZ and V are independent; and so are R ) and Ye.

In *!t.s case we shall develop the likelihood ratio detection procedure,
1-.

and show that the resulting detection statistics is based on the u=ial

statistical noise (N-S-N), N(Z) = *, R).

(a) Likelihood Ratio Detection Procedure

Let no - {(Ol,, 2): 1a02 -e, e >0, i ,, 2) and

a ((l, tk): 01 029 0 > O, i - I# 2). Define the set 9 instead

of A Wen we replace "1 0 2" by 119 > e2 and similarly 01

is defined by replacing ",61 0 2,, by "e2 > 01". Now, in PN3

(4.

/€ -'l
l'

a''": ". m.d ial~ il i''l:' ' ' ' ' ': " " J ""a.. , ~ . *-" ":J ".. .......
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situation we can detect for three distinct cases:

(i) H(%IO) against H(SII) , a two-tailed alternative;

(ii) H(%lO) against H(fl), a one-tail alternative;
0 1

(iii) H( ) versus H(I), a one-tail alternative.

We shall develop the case (ii) , the case (iii) is similar, and

part Ci), of course, combines cases (ii) and (iii) in the alternative.

The likelihood ratio detection procedure principle states that the

decision rule is base on "YES N + S", if and only if,

sup L(z, e)

sup > a or < b,i sup L(z, 0
e E:no

where the existence of constants a and b is guaranteed by the likeli-

hood ratio detection theory. For the case (ii) there exits a constant,

say k, such that by the L.R.T.

[X J -M ~() -n z~f!l rz~i
k <Y ( (n W rN : nL

SLO (Z (N)L (n)

Q Q*.

Clearly,

Y aL[ [X . Y(n) a Z(N)

* n X X - n



-24-

Therefore the critical region, C* can be written as

Y m
C* (k < [r!2] n y }LJ

1 LX"' (m) <(n)

IJ~k2  n >

(n) (i

or,

m(n) 'IN)1Y
(in(), (n)]>k (n

m ai -,X > k X ~* Z (N

n. Y 2 (

(Ike exact expression for nd k an will be given later on).

Finally, we can write the above expressions as

max[rX ,Y

"i[X, Y WC*. -{k <(x-7YCm ; X) < k*)}

.ax[X ,YJ
Let T=7m [~) before, we give the probability

(W Y (n)

that statistic T depends on NQ~ Q ( R) for this write

N(Z) ,(V*, R) (V* r

3'a* - { ...x, ( >)) - m

* amx (R(Z*[, .). R(ZN))" max .

""InnXm ' ¥n] ~ ~ ) "ZN}
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Now, notice that

r z' --) Z(N)€Sn* -N

z .Y n
min (n*)

Z, X(N) = (N) * = N.

(N)(N

Thus, we conclude that T = max(Vm, V*,), which shows that T indeed

depends on N(Z), the maximal statistical noise.

(A) The Distribution of the Statistic T under 0 0

For convenience in this section we shall set X = X(M)  and Y = Y ;

and similarly Z(N) = Z. First note that t > 1, now

H(t) = P{T < t= P{T < t; X = Z) +

+ P{T < t; Y = Z}

-_ ff < t; x > Y) + PfY< t; x < Y)

= P{! <Y < X} + P{X < Y <_Xt}xy
M * Y < xl . Pfx < y < 0tl

-~~~~ X t 1 {lY<t

The integration region can be sketched as in the Diagram (1) below

V AI

Diagram (1) (e * 62 m8)

.... . . . . . ° - .. . i " i - , - - - ". k - ,. : - o - - :.2



- 26 -

NOW

H.t; 0 ) - ( g(y)dy]f(x)dx J f(x)dxlg(y)dyman 0o fx/t It

- [G(x) G Gt)f M dx *f[F(y) -F(YJ)Jg(y)dy

Or, one gets:

:- Hm~ n Ct ;%ul - - m

t

Le.a i , t <cHence (t 10

Simila l (t; X Y 
y%).t

1 t~ + 1 < t <

!Y

m0, t<_

A2,f ;I )a{. t I YJ__( 5tl

(h) ihe Distribution of Statistic T under is s e c el d

Lth te notation be the same as in the case ( above. Def the

sets A1  an A. as follow:

A a T <t; X> Y -4 < t; X > Y) {Y < X < tY}
xI = 'r~t x • Y - _.

A2. x - (T <t; X <Y)}- Y < t; X < Y}-'XX< Y<,tX}.
I~ ",

The integrtion region to compute H(t; Q*[) is somhAt complex, and

~therefore we explicitly illustrate it in the two diagram below.
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IL

-lox

.0 1- -.

Diagam() t 1 >0 Diagram (3) (0 >

12 2

What vs want to compute are the following probabilities:

r0, t< I

H(t;fl,) P (A,) + P(Ae.1

LP(A P(A2), e,,t
2

We shall consider P(A2)0 P(A) with -restriction 1 < t I < t and
2

*1;. 0 1 8

Mim

. P a t wder wate co ta th <oll resgpecabtive

* i-. -. I 0,a.. . .. .. .. .. . .. .. ...

* , '4 *S=*PWA
1 1

.+.... ........... .

.. . ... . . .. . . .. . . .. . . .. . . ..-1.
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P( 2 F) ] 82~d

"-. /t

= 
-

e

82 1:2 I# I

, t -a

Under the Diagram (3), we obtain0 tI
P(A1 ) f12 [J f(x)dxJ g(y)dy

,f,2 [ ( ) - ] BY) dy

,W, ) 2 [ - 1] (2)

.:. Next, we compute P(A1 under the Diagram (2)

P(A1) 1 it If f(x)dx] j ) , + f(x)g y(d)yr

1 /t y

* flit-.r • - c n-I

[(p 1 1) ,n
ut 2

*-,'j--W,--," -',

.... .. . . . . .

2. 1

n~ lm . Im; dyd ddd ; 
'

,d. .r., ,n.t .--
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S..

After some simplification, one gets

P (A I R(e2)1 13el C3)
1 1 2 Nt1

Finally, combining expressions (1), (2) and (3), we obtain:

0, t< l

0
""('t; Q*1 - f-  t'*, I t 0

1 2

Sn 0 2) t -m a (1)n t-n  < !
t

L 1 2 2

Detection Decision Rule. For detecting PN3: , ' r2  (Xi C O(URP),

i - 1,2) against N + S: A 1  X 21  i e (URP); decide N + S, if

and only if,

sup dHCt; %o) C.a
C*

where a is P (False Alarm). This test is optimal in the sense that

it minimizes 0, the PFD among all detection procedures for fixed a.

In other words, the above detection rule maximizes the power

1 - P (False Dismissal) 1 - sup. dH(t; M1,

where C* is the complimantary region to the acceptance region C, in which

one decides in favor of PN.

. .. . .. . . .... . . ... 4 ..mm~ '4l lll ual -nn n n~ m m --- . . .- - -
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Similarly one can devise decision rules in cases O against 0I and

D0 versus

It turns out that the detection statistic T is equivalent to the

statistic T X /Y which has distribution under the null hypothesis', .::(a Xnl(n)

as

, " H~z)-
.. ': . - z n ,  < z <.

This statistic was also treated by *krty (1955) when testing two uniform

distributions in a parametric setting. Rider (19SI) for the same parametric

problem gave a statistic which is the ratio of two ranges. he detection

statistic proposed by Rider has less power than either of T or T,

statistics. Thatri (1960) investigates the problem of testing the equality

of parameters in k uniform populations. Ihatri extends previous results
4,.4

by Roy's (195) union-intersectio principle; again this is in a parametric

setting. Soe critical values are given by Marty (for n a 10 a a) and

Thatri takes larger saple sizes. Barr (1966) also gives same results on

testing the equality of uniform and related distributions. Another equival-

ent statistic to statistics T and T is

* • Q2 [ ]2. n

(in) (n)

For a - n, the three critical regions given below can easily be seen

to be the same. These regions are:

~~. . . . . . .. . . . . . . .... . ... .... .I+ , i . . .....
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C {T > k
1 2 1

C1 T IT1 < a2  or >b 2}

C . {T > k 3

Clearly (%) - k 3 -b2  k k 1. Ts C  ; C  1 This is
a2

also the case for a 4 n. However, if the critical region is two-sided

then the level of significance will be 2 0  instead of mo.

The power of detection statistics T T1 -T2  is discussed in the

following example which is a slight modification of Murty's result.

Example 4.1. Let (X1 , 12 , ... , X) be a random sample of size a from

the family

,SllJRP) (A*,: f(x; X ) (a *)" (x); •  }.

and (Y1P Y29 """ Y ) be mother random sample of size n from the

class

02(URP). (aF: f( ; ,2) l (O * ()l) (y)).

To detect PK3: X, 2 versus N.8: or, C f~l1 (UP) and

X2 e S2(IJM), the most powerfual detectiom rule is obtained by the likeli-

hood ratio principle via statistics T, T1  or T2 . In this case the re-

jetion region is

C' (TI t.)[or {T1' %,) cj

*1.

.5e. . * , -. - - - - -.- - . . . . - - .
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Wher t a 0 where a is critical level. The power, w,

of the test is given byr.5Ia (1/t n, I < T < t a
(T01 a N

SH P a TI - , > t .

N a O

If 0 < T < 1, then the NP detection rule has the critical region:

AC (T , where t a  and hence the nower of the test is

'lf

rP{T1 (_<  IN.+S)

". A Gmmeral 3 prsion. f or the Power.

*. H(U wo a~'l* detetin H(DO =A2  ((4 1 c 2O 2 (URP),I-1,2 n ) 02).s

-. '5[i.then by using the statistic T one can get the power Ebnction w(eI , *23

as below.

Since the critical region is of the form C* a {T > t I where

ta (it~n~a the power fAction of this IUN test becomes:

P(1:1 t/02 I(t*, ) - 2 - t -

ta

t;*]) if Il<ta
2 12 2

p , p . .
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and

P{T > t - t d(t; )

1 023 -n-n
(nC t - R) t), <t <-.

2 02~ a

An Alternative Approach which is Equivalent to the Detector Statistic T.

As before let 0" ((01' 02): el- e2  and l - u((8, 82):

0 < a1 < 0 2 < . Let

Y(n) •max (YX, , ... , y}

Z) -a"x [X(M. ,Y a. +n-N
* (N) () (n)

To detect H(00) I { , '2): a'1 - #V2 e O(URP)) versus

H(q) -{(.' 9 2 ): Orl 0 ' 2 ; #fI C (URP) for 1 1, 2 and

eI < 02), consider

1e (x(In)) say,

0

where is an arbitrary function which gives rise to a test statistic

T by the (conditional) L.R. (likelihood ratio) principle.

After sow computation, one can show that

.4
4 : ; / / ' " ',' ,r ' ' , '' ., - . . - ' .. " - .,. .. " -. " .. ' . . - - . .. - . . -- •---

ros'4| mIk
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0<.) z.) <0

, (o-) 1x

a3

0 1

* .-L 1)'o(0, Zh.) (.)) <C Z )) (X(.))J,

--' 9~1 ( z.) <
I- <x .1))

a x(. U-1 0-6 O10. (

(x(.))-
'

N Z.u (0.)
0-,< Z(.) o

fat' (U

Clearly I (r3) is monotone decreasing in x

hence by the statistical testing theory [Lehmmn (19S9)], the uniformly

inin= PDR unbiased procedure of size a for detecting HC O ) against

H(01) is given by

*(X ) L: , if Xc <cCZ.))

0, otherwise,

..'
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.A where *(X.) satisfies

-a*

fe O(X) f (xU z )dx()-

The critical region is obtained by the expression

* M-1
- JC(z*.)) x. - a

5 z(.)

A'

or

ccz. - z a.) l/m N /u

If we develop a detection procedure this way for detecting H(%) against

.H(M), then the critical region turns out to be the same as for the

statistic T. Thus the test based on T3  given Z*. is equivalent to

the detection procedures T, T1 , T2.

Decision Rule. For detecting PN3  versus N I S: H(fl,); decide

N S, if and only if,

".2

o a P {False Alarm).

(Remark: Detection statistics T. T1, T2, T$ are all SDF wrt H(0O).)

23

p X . '/ , *¢ '; % w," ' ,r " ," "" " . . " " ' ' .". • . . '"" -""" ' - .,." " ' ' .•••." " •" " . . "
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APPENDIX

Tables

Graphs

Numerical Examples

[This appendix was prepared with the aid of S-M Lee and A. Mason]

7-o
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Illustrative Examples

Eaple 1: Detection procedures for Model 11: PN 2

Given a set of historical data: , M we want to test the

following PN situation:

PN2 O(URP)

N + S: X4 QQRP)

Three statistics are used for two sets of simulated data:

(1) Kolmozorox-Smirnov

Decide N + S iff DU* > d m.,6  (from IC-S table)

Do* sup C-~ (U ( -U(j)) ul
0<U~l ~' Jul

max~~~~~ 0)p {j-- W U()- f
where U (J) Ia .

at

(2) SrnvsnI

Decide N.4S iff Do > d t!n) da 'a

sup (- U-i- I e (uU Uj)) -ull k!%
Do (IU~l jm

(3) _______ _______

Decide N +S iff DU > d* (from Table 11
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.A 1 '3-1

sup I (U - M) -uI- s <u<l mJ=l

a m [max(L Um),U(j) -L..~
" mm

*- 15.,i<- 13

The data sets are given in Table 2. The graphs showing inter-arrivals,

waiting times and counting process for both processes are shown in diagrams

1 to 6. The computed values for the above three statistics are listed

at the bottom of the Table 2.

Conclusion. For the both sets of data all detectors, at PFA a = .01

decide in favor of PN2.

Note. For m greater than 30 the exact Kolmogorov-Smirnov statistic

asymptotic values are adequate to approximate D. when m > 30.

For example.

PFA a: .01 .0S .10 .20

A 1.63 1.36 1.22 1.07

(2-sided test)

!

.4 ,"I ;""'''7" """ '-" """.. .' " " ". .' "" """""""/ l -"lS-"""" i~ l' ' ls 1i lII|Sl s s n' ' """""" dl"nm "" - ' "
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Exple 2. Detection procedures for Model III: PN3

Given two sets of data:

x1, x2 .. x i .i.d. U(O, 81)

y,;.. VI Y2 "' yu t.t.d. U(0, 021.

Consider the following Model 111-type situations:

Case 1.

PN- P3 X 1  'X2 CO1

N. + S: eof and X2 cfl(URP) (e1 < a2)

Decide N. S iff XC.) <_ /mt mXC(), Y(n)

Case 2.

4: " 1a"d e (VM) (9l 2

.+s: a' da X2 C n(tp) (01) > 2)

Decide N. S 1ff Y(n) 16l/n /n mlx(u), Y(U))

PN 3 : X1 -" Q(URP) (oa - 2)

Decide N S iff

xC.) (_ /) mzfX(a) Y(n)
:.

t . , . .5 ', ,; , .. , : , 7 . , -  . . - . . . . . . . . ., . . . . . . . - . . .

1 ". .. .m lhm1e "-'- m mn"-"-"-an"n m- -";
/C.-.
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1/A NY(n) 01 Q C) MxX(m), Y(nt))

Note that if flu

1/2 N I/*a/ N1  YI/)
a (;-P msx(a), Y (n)) at q1/f ) uux{X(u), n)

a - / (2)1/nl xu) ~)

- (201) mxc{X~a), Y(n)).

so we decide N.+S 1ff

odn(X(m., Y(n)) < (20)1/l mz(X(), Y(n))

Puremze, notice that all tm detectieft statistics developed fwr this

psoblen namely T, TV, TV T3 wie equivaleft md 811 um the pure

noise situation. One could have md aW of the obove detection proc.&.res.

* In this exmole detection proceduum T and T3are wsed. 7he peeated

data end the application of the above detection procedmures is give. below.
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- TABLE 3. Simulated Data for URP(O)

Observation e, - 1 8 2 =A25 S 04 10
(Set 1) (Set 2) (Set 3) (Set 4)

1 O.580 0.723 1.892 6.239
2 0.951 1.462 0.467 8.044
3 0.786 2.258 1.563 1.373
4 0.298 2.217 3.330 S.163
5 0.454 1.242 3.252 6.336
6 0.006 0. 991 2.551 7.403
7 0.276 2:180 0.919 7.020
8 0.306 2.328 1.932 5.071
9 0.689 1.489 0.$81 7.485

10 0.383 0.524 4.259 5.620
11 0.133 2.220 3.551 3.081
12 0.832 1.160 3.611 4.854
13 0.583 I.S70 3.207 8.760
14 0.099 1.117 0.079 8.006
15 0.277 1.145 0.358 0.426
16 0.620 0.587 4.770 8.975
17 0.084 1.909 2.115 8.545
"" 18 0.990 1.478 1•937 8.542
19 0.979 1.110 3.021 6.887
20 0.694 1.238 4.485 5.015
21 0.934 2.305 0.382 2.012
22 .J; 0.212 0.525 2.580 1.844
23 0.131 2.080 4.540 2.978
24 0,863 0.382 2.860 8.582
2 0.819 2.116 0.608 1.215
26 0.41 1.69S 3.922 2.189

-* 27 0.019 2.314 2.945 8.128
28 0,314 0.904 1.395 9.536
29 0.765 0.632 2.263 5.358
30 0.942 0.703 1.166 5.770

Let X1(30). for j 1, 2, 3, 4 denote the maximum value in the set j.

Then X1(30) -0.990, X2 (30) , 2.315, X3 (30) * 4.770, and X4 (30) a 0.536.

Choose "A, a - .01.

1

. i,; ' ,* , _r , ;.;;. : .4. ,". '4.. .; • . .*.- ;. , ,. . .. ...... . --..... /..- - -... .. .
/ I ]l- -|i '4' . d *. . ,- -. ',.
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Decision Rules

Case 1.

For PNI versus N S decide N S, if and only if,

1/30
X1 (30) < a1/3 (0. 2(xx I (30), X2 (30)) =

.(2a)1/30 (2.311 9.oS;-

so one decides in favor of N. S.

Case2.

To detect PN against N + S in this situation decide N. S, if

and ely if,

X2(0)_ 1 / 3 0  60 1/30

1/30
(2m) (4.770) - 4.19

Thus, we conclude for N . S.

Case 3.

Por detecting PN3  against S . N in this case one concludes N . S,

if and only if,

T m x {30), X4(30)) (2m).1/30 1.14

min (x3(30), X4 (30)) -

Since T .56 1.99, one concludes in favor of N . S.
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Examle 3. Epileptic Seizures and URP.

The situation below is very similar to a signal detection problem.

First we need two definitions.

(a) Epiles: Chronic disorder of the central nevous (CNR) system

characterized by recurrent (multiple) seizures which do not occur: (i)

only during hospitalization for an acute systematic illness; or (Ii)

only in association with fever; or (iii) as a result of development

or degenerative diseases of the central nervous system of CR infection.

(b) Seizure: The clinical manifestation of abnormal paroxysmal discharges

of neurons in the brain producing coulsivo movements ad/r sensory,

vegetative or psychic dysfunction with or without loss of conslousnest

Epileptic seizures were wasured on an epileptic female patient, whose

age was 12 years, fm 7:02 a.m. to 7:02 p.m. The beginning times and

* the duration of oW* seizure wer recorded. I1e total nu== r of seizures

was 20 for 12 hours. We wish to decide whether the inter-arrival

times have a umiform distribution. The data obtained were as follows:

4<

'.0. .. i " " ' '  '  :: ,-, ', "" - . " ' , o" "" .. . " -" . ' . . ."," ,--." - '
/ I
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TABLE 4. Epileptic Seizure Data

Start 7:02 a.m Stop 7:02 p.m.

Seizure Tim Duration Inter-arrival tin(uin) (Xn)

1 9:16 0.2 134
2 9:16 0.5 0
3 10:06 0.3 SO
4 10:16 0.1 10
S 10:52 0.2 36
6 10:54 0.2 2

o 47 10:58 0.2 4
8 11:04 0.2 6
9 11:14 0.2 10

10 11:20 0.2 6
11 11:46 0.2 26
12 13:06 0.1 90
13 13:15 O.S 9
14 13:16 0.2 1
1s 13:46 0.1 30
16 17:S4 0.2 248
17 18:20 0.2 26
18 18:25 0.2 S
19 18:46 1.0 21
20 18:48 0.2 2

IS. y-
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Detection of the Model PN versus S + N

PN(H0 ): The inter-arrival time distribution is 11(0,e) for some e > 0,

. where XI, X2, ... , X20 are the inter-arrival times of a renewal process

and are L.i.d. r. vs.

N + S: Not as above.

Da-a: 134, 0, SO, 10, 36, 2, 4, 6, 10, 6, 26, 80, 9, 1, 30, 248, 26, 5,

21, 2 (a - 20). Choose PFA, a a .01.

(1) The Lilliefors-type Detection procedure.

We reject PN, if and only if, D* = sup I P*(x) - Po(x)l > 0.3553,I'm- x
where 10.3553" is the .99th percentile of the D. distribution in the

uniform case for a = 20, and is obtained from Table 2.
Ai .: In this case e. = x {Xl} = *0 248; uoX 1 - x28 "

where 0 < x < X (20. The computations for D20 are given in the Table 5

below. SiUnce D2 0 - 0.6548 > 0.3553, we reject PN situation for a PFA

of 0.01 that the data is uniform.

-4.4
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(2) The Detection based on a M-S-N.
In this case we reject PN, if and only if, D* > 0.3014, where

a

"0.3014" is the .95th percentile of the Din. 1 distribution for m = 20

obtained from the standard Kolmogorov-Smirnov table. Here, a M-S-N

is given by V*, which is defined as

v* { . IS(Icl *i;:): X~m ' Xc)'"''~ " i l

where UIV ... U -1 are i.i.d. U(0,1) r. vs. For the Epileptic Seizure

data with m u 20, one gets

V* =(0, 0.0040, 0.0081, 0 o081, 0.0161, 0.0202,

0.0242, 0.0242, 0.0363, 0.0403, 0.0403, 0.0847,

0.1048, 0.1048, 0.1210, 0.1452, 0.2016, 0.3226,

4.. 0.5403).

The computations for DO are given in Table 6 below, where

U It 2o *... 19.

4

$''

!4 4. ., ,
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TABLE 6. Computations for a M-S-N Detection Statistic D*;

Epileptic Seizure Data.

i-1 i1
i 119 Fe(yi)=yi 19 i - Fe 1 (9)

1 .0526 0.0000 0.0000 0.0526
2 .1053 .0040 -.0486 .1013
3 .1579 .0081 -.0972 .1498
4 .2105 .0081 -.1498 .2024
5 .2632 .0161 -. 1944 .2471
6 .3158 .0202 -.2430 .2956
7 .3684 .0242 -.2916 .3442
8 .4211 .0242 -.3442 .3969
9 .4737 .0363 -.3848 .4374
10 .5263 .0403 -.4334 .4860
11 .5789 .0403 -.4860 .5386
12 .6316 .0847 -.4960 .5469
13 .6842 .1048 -.5268 .5794
14 .7368 .1048 -.5768 .6320
15 .7895 .1210 -.6158 .6685
16 .8421 .1452 -.6443 .6969
17 .8947 .2016 -.6405 .6931
18 .9474 .3226 -.5721 .6248
19 1.0000 .5403 -.4071 .4597

Since 0 0.6969 > 0.352,

We reject the null hypothesis for a PFA level of 0.01 that the data

is uniform.

Discussion of the Detection Results

The PN situation is rejected by all procedures by a "large margin".

This seem to indicate that the inter-arrivals are decidedly non-uniform.
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